
The Math Behind 3D Computer Graphics

NAT501
Group 50a

Martin Østergaard Villumsen
CPR: 040387-2687

Jesper Thingholm
CPR: 090282-1627

Tino Didriksen
CPR: 180982-2393

Peter Nielsen
CPR: 250291-3185

Henrik Edelmann
CPR: 100591-1083

Supervisor:
Rolf Fagerberg

Deliverables online at:
http://tetris.pjj.cc/

May 30, 2012

http://tetris.pjj.cc/

Abstract

First we introduce the basics of 3D geometry and the applicable Cartesian and
cylindrical coordinate systems. We explain that three points form a plane in 3D
space and that points in 3D space are represented as vectors. We define that
objects are built from such planes and that each object has its own coordinate
system.

Then we explain the various operations one can do on points in 3D space, and
why matrices are so very useful in this field. We also cover how operations
described using matrices can naturally be combined to fewer operations. We
then introduce the matrices and matrix math required to perform the transla-
tion, rotation, scaling, and projection operations. These operations are further
detailed in turn, where we specify what each operation is and why it is relevant
to 3D graphics.

We then cover how rendering works by going through the rendering equation.
After that, we describe how lighting is calculated and used with the standard
lighting model used in OpenGL. We further detail the contributions of light-
ing model - emissive, specular, diffuse, and ambient - and how they all come
together. Lastly, we explain the standard light types and attenuation.

Towards the end we give a quick outline of the work put into the practical
application - our 3D Tetris game - and what hurdles and quirks we observed
and how we overcame them.

Finally, we conclude that while the math is academically interesting, there is not
much practical need to know any of it when working on computer applications
that utilize 3D graphics.

1

Contents
1 Introduction 4

1.1 Goals and Objectives . 4

2 3D Geometry 5
2.1 Cartesian coordinates . 5
2.2 Cylindrical coordinates . 5
2.3 Points as vectors . 6
2.4 Planes defined by 3 points . 6
2.5 Objects in 3D space . 6
2.6 Multiple coordinate systems . 7

3 Operations on 3D points 7
3.1 Why use matrices . 8
3.2 Combining operations . 8
3.3 Homogenous coordinates . 8
3.4 Translation . 9

3.4.1 What is a translation . 9
3.4.2 Why is it relevant in 3D applications 9
3.4.3 Translation by addition 9
3.4.4 Translation by addition is not a linear transformation . . 9
3.4.5 Why translate by use of linear transformation 10
3.4.6 4D translation matrix . 10

3.5 Rotation . 12
3.5.1 Rotation around cardinal axes 12
3.5.2 Rotation in general . 14
3.5.3 Euler angles . 16

3.6 Scaling . 18
3.6.1 Scaling along cardinal axes 18
3.6.2 Scaling in general . 19

3.7 Projection . 19
3.7.1 Intro to projection . 19
3.7.2 Perspective projection . 20
3.7.3 Orthographic projection 20
3.7.4 View frustum . 21
3.7.5 Coordinate Spaces and the clip matrix 22

4 Lighting and Rendering 23
4.1 Rendering . 23
4.2 The standard lighting model . 25

4.2.1 The emissive contribution 25
4.2.2 The specular contribution 26
4.2.3 The diffuse contribution 27
4.2.4 The ambient contribution 27
4.2.5 Putting it all together . 27

4.3 Light sources . 28
4.3.1 Standard light types . 28
4.3.2 Light attenuation . 29

2

5 Practical Application 29
5.1 Tech note . 29
5.2 Cylindrical Tetris . 29
5.3 Displaying in 3D . 30

6 Conclusion 32

References 33

3

1 Introduction

The field of 3D computer graphics is wide and varied, covering topics ranging
from computer games through data visualization to medical imaging and wind
or water simulations. We have chosen to focus on the parts of 3D graphics that
are directly applicable to computer games, and use that knowledge to construct
a concrete product, namely a 3D Tetris clone. But even such a drastically
limited scope provides ample opportunity to learn a slew of new mathematical
concepts and fresh applications of well known (very) old concepts.

Of key interest to anyone wanting to delve into the math behind 3D graphics
will be linear algebra’s staple diet of vectors and matrices, though limited to
four dimensions. This may sound like one dimension more than most would
expect to need, but there are some challenges in the math that cannot trivially
be solved in three dimensions, so this is a case where adding another dimension
actually simplifies the overall algebra.

Common to all modern 3D computer games is the need for shuffling around a
large number of points in 3D space, which is where matrix operations come in
handy. But one does not want to rely on brute force application of multiple
matrix operations for every point - as that would stall even the most powerful
graphics processors on the market - requiring math to step in to simplify these
operations into fewer combined operations that yield the same end result.

But linear algebra is not the only old math to find modern use: Classical Euler
angles are a natural part of rotations. And while we won’t cover them, it is worth
mentioning that quaternions, largely forgotten for over a hundred years, have
had new life breathed into them because they solve certain tasks for 3D graphics
even better than linear algebra or Euler angles. So fields of mathematics that
are at least 150 years old power the core of all of our generation’s favorite pass-
time.

1.1 Goals and Objectives

We want to understand the math behind the process of rotating, scaling, trans-
lating (moving), projecting, and lighting objects in 3D space onto a 2D view-
point.

To do this, we intend to produce a 3D Tetris clone with a cylindric playing field
where the blocks have 360◦ movement around the edges of the cylinder.

The Tetris game itself will be made in Java using the JOGL OpenGL bindings
maintained by Jogamp. If we have time left over, we plan on expanding the
game by adding features such as textures, shadows, physics, block ghosting,
transparency, hold block, etc.

4

2 3D Geometry

2.1 Cartesian coordinates

A 2D Cartesian coordinate system consists of two axes; the x-axis and the y-axis,
where one is perpendicular to the other.

When working in 3D Cartesian space, the 2D coordinate system is extended
with a z-axis, which is perpendicular to the two other axes. This gives us three
axes, where the x-axis is perpendicular to the yz-plane, the y-axis perpendicular
to the xz-plane and the z axis perpendicular to the xy-plane - the x-, y-, and
z-axes being perpendicular to the three planes is known as the term mutually
perpendicular.

When working with 3D graphics in the 3D Cartesian space, a point is specified
by three numbers, x, y and z, which are the signed distances to the yz, xz
and xy planes, where the distance is measured along a line parallel to the given
axis. Figure 1a gives an example of how to locate a point in the 3D Cartesian
space.

(a) Locating a point in the 3D Cartesian
space ([2] p. 14).

(b) Cylindrical coordinate system ([2] p.
203).

Figure 1: Cartesian & Cylindrical Coordinate Systems

2.2 Cylindrical coordinates

Cartesian coordinates is one way to represent points in 3D space - another way
is to use cylindrical coordinates, which can be quite convenient when working
in a cylinder-shaped environment or describing a cylinder-shaped object (i.e. a
set of points), such as in our cylindrical 3D Tetris game.

5

Points represented by cylindrical coordinates are described by the distance to
the origin r, the angle Θ, and the height z. So instead of using (x, y, z) we use
(r,Θ, z), where the height z is the same as in Cartesian coordinates. While being
convenient in some situations, it is also natural to think in terms of distance
and direction (for example, SDU lies 5 km. south-east of Odense City). An
example of a cylindrical coordinate system is shown in Figure 1b.

2.3 Points as vectors

An important tool when working with 3D graphics are vectors, which are used
to represent points in space, such as vertices of a triangle or the location of an
object. Note that points and vectors are conceptually distinct, but mathemati-
cally equivalent.

By taking the cross product of two vectors, −→p1 and −→p2, you get a vector, −→n , which
is perpendicular to the plane spanned by −→p1 and −→p2. This vector is referred to
as the normal vector −→n . The normal vector is used to calculate lighting and
reflections (see section 4).

2.4 Planes defined by 3 points

In 3D graphics all objects are (usually) built from triangles, where each triangle
consists of three points, which are connected by three lines. A plane in 3D space
is defined by three non-collinear (i.e. not on a line) points. No matter how each
point is moved (as long they all are non-collinear) it will always be a plane. This
would not be true if you worked with squares (i.e. four points), which is why
all objects in 3D graphics are usually built from triangles.

2.5 Objects in 3D space

Figure 2: 3D object

When operating on objects in 3D space it is
important to perform the same operations
on all planes that is part of that object. Ob-
jects are represented as vectors consisting of
three sets of points, which allows us to apply
an operation on all points in the object at
the same time. An example of a 3D object
in space is given in Figure 2.

For example, given three points, the plane
spanned by these points would be repre-
sented as one vector

−→
V :

6

−→v1 := (x1, y1, z1)
−→v2 := (x2, y2, z2)
−→v3 := (x3, y3, z3)
−→
V := (v1, v2, v3)

Which makes sure all three points are moved equally if the plane
−→
V is moved.

2.6 Multiple coordinate systems

When working with games and graphics it is convenient to work with multiple
coordinate systems. In theory, we can establish a coordinate space anywhere
we want by picking an arbitrary point as the origin and decide how the axes
should be oriented. However, in practice the coordinates of the origin is not an
arbitrary chosen point, since coordinate spaces are created for specific reasons
[1] p. 79-80.

The idea of multiple coordinate systems is to have one coordinate space for the
camera, one for each object, and one world space. The world coordinate space
establishes the global frame for everything and can express the position of all
other coordinate spaces. When an object is moved or rotated the object space
is moved/rotated along with it, and also changes orientation. Given is a real
life example of the distinction between world space and an object space ([1] p.
83):

When someone gives you driving directions, sometimes you will be
told to "turn left" and other times you will be told to "go east."
"Turn left" is a concept that is expressed in object space, and "go
east" is expressed in world space.

Which gives a clear understanding of the distinction between world space and
object space.

The camera space is actually an object space and is quite important. It is
associated with the viewpoint used for rendering and the camera is placed at
the origin in the camera space. Note that it is important to distinguish between
the camera space (which is 3D) and the screen space (which is 2D) [1] p. 83-84.
The mapping from camera space to screen space involves an operation known
as projection (see section 3.7).

3 Operations on 3D points

In computer graphics, and the math behind it, it is necessary to be able to rotate,
move, scale, etc., sets of points which lies within 3D space. This can be done with
operations: An operation is a function that either moves, rotates, projects or
applies another function on a set of points or even a single point. Our operations
are represented as matrix functions. In the following chapter we will deduce the
different operations for moving, rotating, scaling and projecting.

7

3.1 Why use matrices

The reason for using matrices is that they allow handling of multiple functions
on different coordinates, and are therefore practical for doing computer graphics.
This representation makes it possible to combine all the different operations into
one matrix.

3.2 Combining operations

The matter in which one combines operations represented as matrices is by
multiplying them. However, when dealing with matrices there are a few rules for
multiplication: The first and most important part is the matter of dimensions,
the rule is that the matrix on the right side of the multiply sign must have the
same number of rows as the left side matrix has columns. The following example
will show exactly how 2 matrices are multiplied: [1] p. 118.a1 a2 a3

b1 b2 b3
c1 c2 c3

 ·
d1 d2 d3

e1 e2 e3

f1 f2 f3


=

a1d1 + a2e1 + a3f1 a1d2 + a2e2 + a3f2 a1d3 + a2e3 + a3f3

b1d1 + b2e1 + b3f1 b1d2 + b2e2 + b3f2 b1d3 + b2e3 + b3f3

c1d1 + c2e1 + c3f1 c1d2 + c2e2 + c3f2 c1d3 + c2e3 + c3f3


The order of multiplication is also important when combining operations mean-
ing that if you have 3 matricesM , R and F , (MR)F is not the same as (FR)M
[1] p. 120. This concludes how operations are combined.

3.3 Homogenous coordinates

[1] p. 176 Homogenous coordinates are represented as an extra coordinate w on
points in n-space. If we were to look at the 2D case a point would normally be
written as (x, y), as a homogenous coordinate set it is written as (x, y, w). In 3D
(2D homogenous space) space w = 1 represents a 2D plane for which all points
can be projected to, by the following transformation (x/w, y/w). If w = 0 the
division is undefined and therefore defined as a direction vector towards a point
at infinity and not transformed.

For any given point (x, y) in the homogenous plane there are an infinite amount
of corresponding points which can be written as (kx, ky, k) given that k 6=
0. These points form a line through the (homogenous) origin. This can be
expanded to the 3D case and by adding the homogenous coordinate it will
become 4D. The projection transformation to a 3D point on the plane given by
w’s value is then as follows (x/w, y/w, z/w). One of the reasons for using the
4D case is explained in section 3.4.6. Another reason is that when using the
proper value for w, a perspective projection is performed.

8

3.4 Translation

3.4.1 What is a translation

A translation is the operation of moving a point, or a set of points, by a given
distance in a given direction.

In Cartesian coordinate space this can be done by altering the x-, y-, and z-
values of the vector representing each point.

If all points of a set is moved in the same direction, by the same distance, their
relative positions are unchanged. If e.g. two points both are translated by ∆x
units in the x-direction, by ∆y in the y direction, and by ∆z in the z-direction,
then they will have the same position relative to each other.

3.4.2 Why is it relevant in 3D applications

In games and other 3D applications, translation is necessary to move objects
and cameras around in the scene.

It is also necessary to temporarily move sets of points to the origin in order to
perform other operations on them.

3.4.3 Translation by addition

One simple way of translating a point is by adding a vector consisting of the
amounts of desired translation on each of the axes.

−→v := (x, y, z) ,
−→
t 1 := (∆x,∆y,∆z)

−→v ′ := −→v +
−→
t 1

−→v ′ = (x+ ∆x, y + ∆y, z + ∆z)

3.4.4 Translation by addition is not a linear transformation

Translation by addition is not a linear transformation [1] p. 130. Therefore, it
is not possible to translate a point by multiplying it with a 3x3 matrix.

This is because the result of the zero vector multiplied with a matrix will always
result in the zero vector itself. This means that a point located on one of the
axes cannot be moved away from that axis by use of translation.

(0, 0, 0)

m11 m12 m13

m21 m22 m23

m31 m32 m33

 = (0, 0, 0),∀mij ∈ R

9

3.4.5 Why translate by use of linear transformation

When performing operations on many points it is desirable to be able to con-
catenate as many functions as possible [1] p. 153. If e.g. a set of points has
to be multiplied with a matrix R ∈ R3x3 and a matrix S ∈ R3x3 it requires
fewer computations to first multiply R and S, and then multiply the result with
the points, rather than multiplying the points with R, and then multiplying
the result with S, because R and S can be multiplied once for the entire set of
points.

((x, y, z) ·R) · S = (x, y, z) · (RS)

If, on top of that, one wishes to translate the points by adding a vector, that
operation cannot be concatenated with the rest.

((x, y, z) ·R) · S +
−→
t = (x, y, z) · (RS) +

−→
t

This gives a multiplication and an addition operation on each point. If, however,
translation can be represented as a square matrix with dimensions equal to
other transformation matrices, such as rotation, scaling, etc., then it too can be
concatenated into one matrix leading to only one multiplication operation on
each point.

3.4.6 4D translation matrix

This can be done by changing all transformation matrices into 4x4 matrices,
and likewise change the points into 4D points by adding a fourth value, w to
the vector representation [1] p. 178.

(x, y, z, 1) ·


1 0 0 0
0 1 0 0
0 0 1 0

∆x ∆y ∆z 1

 = (x+ ∆x, y + ∆y, z + ∆z, 1)

Now, translation in 3D can be performed by multiplying points with matrices.
All other transformation matrices also need to be changed into 4x4 since they
have to be multiplied with a 4D vector. By doing this the translation operation
can be concatenated with other transformations so that each point is accessed
fewer times.

The translation matrix can be inversed. This will give a matrix that translates
points the same distance, but in the opposite direction. The inverse of the
translation matrix is:

1 0 0 0
0 1 0 0
0 0 1 0

∆x ∆y ∆z 1


−1

=


1 0 0 0
0 1 0 0
0 0 1 0
−∆x −∆y −∆z 1



10

This is true, because the two matrices multiplied give the identity matrix.
1 0 0 0
0 1 0 0
0 0 1 0

∆x ∆y ∆z 1




1 0 0 0
0 1 0 0
0 0 1 0
−∆x −∆y −∆z 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


While this matrix translates the points in 3D, it is technically not a translation
matrix. What the matrix does when multiplied with a set of 4D points is to
shear the object in 4D [1] p. 179. This shearing of the four dimensional object
moves the object’s 3D hypersurface in 3D space.

Shearing is a transformation, that skews an object by dragging parts of it. This
stretches the object in a non-uniform matter distorting angles [1] p. 152.

While four dimensional space is challenging to display, the concept can be illus-
trated by translating two-dimensional points.

v1 := (0, 0), v2 := (1, 0), v3 := (1, 1)

Add a third homogeneous coordinate to each vector:

v1 → (0, 0, 1), v2 → (1, 0, 1), v3 → (1, 1, 1)

T :=

 1 0 0
0 1 0

∆x ∆y 1


v1 · T = (0 + ∆x, 0 + ∆y, 1)

v2 · T = (1 + ∆x, 0 + ∆y, 1)

v3 · T = (1 + ∆x, 1 + ∆y, 1)

The matrix T , which is capable of translating 2D points, can shear a 3D model,
thereby translating its 2D surface.

(a) A 2D plane in its original posi-
tion

(b) The plane translated by shear-
ing 3D space

Figure 3: Translation by shearing

11

3.5 Rotation

Rotation is one of the cornerstones within computer graphics. It allows a rather
simple handling of realistic movements, that otherwise would be very complex.
Say e.g. you want to make a triangle in the xy-plane, viewed from the z-
axis, and rotate it clockwise in 3D space. This could be done with a normal
translation matrix, but would prove a challenge to get a smooth movement, as
you would always have to go back and move the most recent points. This means
you would have to design a function for translating that for the first application
takes the original points, and moves them in the correct way for a clockwise
rotation. After the first points, the function would then have to take its own
result and move in a different manner, in order to maintain the position of the
point that the triangle is rotating about. The rotation matrix can solve this
problem, simply by using the original set of points and angles.

3.5.1 Rotation around cardinal axes

There are many different models for rotating points in 3D space. An impor-
tant thing to understand, is that rotation is not only limited to computational
graphics, but is a mathematical field. The first method of rotating points in 3D
space we will explore, is rotation by rotating a point around the 3 cardinal axes
with directions in our coordinate system:

x =

1
0
0

 , y =

0
1
0

 , z =

0
0
1


The derivation of the rotational matrices [4] p.3

If we again look at our triangle as a single point P in the xy-plane, looking
down from a positive z-direction, the position of P can be described as a polar
coordinate set. This gives us a simple way to describe P with a distance and
an angle (see figure 4c). As we are in the xy-plane all the z-coordinates will
remain the same throughout the rotation, hence we can write the coordinates
without taking z into account e.g. P = (x, y). As we have a point in Cartesian
coordinates we use the transformation to polar coordinate space given by the
equations below. Our goal, however, is to find an equation which rotates Carte-
sian coordinates around the z-axis, as the figures 4a and 4b indicates.

x = r cos(θ), y = r sin(θ), r =
√
x2 + y2

12

(a) Non rotated tri-
angle

(b) Rotated trian-
gle

(c) Polar representation of P and P ′ [4] p.
3

Figure 4: Rotation examples

Since we want to find the equation for rotating P in the plane, we will let
P ′ = (x′, y′) describe the rotated point which we wish to find. When polar
coordinates are used any new point with the same r can be found by addition
or subtraction of another angle. Because we wish to find the equation for pure
rotation, we give that r is set and therefore:

P ′ = (x′, y′) = (r cos(θ + Θ), r sin(θ + Θ)

Using the general addition formulas for sine and cosine, the following derivation
of the rotation equation can be done.

(x′, y′) = (r cos(θ + Θ), r sin(θ + Θ))

= (r cos(θ) cos(Θ)− r sin(θ) sin(Θ), r cos(θ) sin(Θ) + r sin(θ)cos(Θ))

= (x cos(Θ)− y sin(Θ), x sin(Θ) + y cos(Θ))

This gives a manner of describing a rotation in the xy-plane as a coordinate set.
However, as previously stated this is also the rotation about the z-axis with
origin as the center of the circle. This gives the following equation, which is the
foundation for the rotation matrix around the z-axis in 3D space.

Rz,Θ(x, y, z) = (x cos(Θ)− y sin(Θ), x sin(Θ) + y cos(Θ), z)

If you wish to describe this formula as a matrix it would be as follows:

Rz =

cos(Θ) − sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 1


The following equations for rotation about x and y can derived in a similar
manner:

Rx(x, y, z) = (x, y cos(Θ)− z sin(Θ), y sin(Θ) + z cos(Θ))

Ry(x, y, z) = (x cos(Θ) + z sin(Θ), y,−x sin(Θ) + z cos(Θ))

13

Taking the fourth dimension trick into account our three rotation matrices
are:

Rx =


1 0 0 0
0 cos(Θ) − sin(Θ) 0
0 sin(Θ) cos(Θ) 0
0 0 0 1



Ry =


cos(Θ) 0 sin(Θ) 0

0 1 0 0
− sin(Θ) 0 cos(Θ) 0

0 0 0 1



Rz =


cos(Θ) − sin(Θ) 0 0
sin(Θ) cos(Θ) 0 0

0 0 1 0
0 0 0 1


An important note to remember when applying these matrices is that they are
derived within the polar coordinate system, and therefore all angles are pre-
sented as a function of π, so that 90 degrees will be π

2 . Since our coordinate
system is derived upon is a right-handed system, a positive angle gives an clock-
wise rotation.

3.5.2 Rotation in general

This entire section originates from [4] p. 4. If you were to rotate a figure any
amount around a point that is not on one of the cardinal axes - henceforth, this
will be referred to as the point being not aligned with one of the cardinal axes
- you would have to align the point with one axis in order to rotate the figure
in the desired manner. In the following explanations all operations made on
the point, is also done on the figure so that their relative position remains the
same.

The way one aligns a point with an axis is to rotate the point around the other
axes so that the value of the other axes is zero. e.g P = (x, 0, 0) is aligned with
the x-axis. The method of aligning the point with one axis involves multiple
operations and therefore we will need to use the combining of operations as
previously discussed.

14

(a) Step 0: Nothing
done

(b) Step 1: Translated (c) Step 2: Aligned

(d) Step 3: Rotated (e) Step 4: Unaligned (f) Step 5: Translated
back, rotation done

Figure 5: Rotation examples

Firstly, you would move the point to the origin, but since you cannot move the
point and figure non-uniformly without distorting the figure, you move it so
that the value of the axis you want to align the point with is 0.

Hereafter you rotate your point and figure around one of the other axes; when
doing so, the value of that specific axis remains the same. Since you have chosen
the 1st axis to align with, the only axis value left in the point to set to zero is
the 3rd axis.

After this rotation is done you rotate the point and figure (points) around the
3rd axis so that the 2nd axis value of the point you align is zero. Remembering
that the value of an axis does not change during a rotation about that axis, the
2nd axis value in the point remains 0.

So when those two steps are done, the point and thereby the figure is aligned
with the 1st axis, and you can now rotate the desired amount around the aligned
axis, to achieve the right rotation. However the point we wanted to rotate about
is still placed on the 1st axis, and not where we wanted originally. In order to do
so we will have to undo the rotations we did earlier and in the opposite order,
so if we rotated in the following order: 3rd, 2nd, 1st (aligned rotation) the order
of undoing rotations are to be: 2nd, 3rd.

If we look at our functions within our matrices they are all functions of sine and
cosine and therefore the opposite rotation can be written as minus the angle
used to do the rotation e.g. if the rotation angle is Θ the angle to undo the

15

rotation is −Θ. The following example will show this connection:

(
x y z 1

)
·Rx(Θ) ·Rx(−Θ) =

(
x y z 1

)
·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


=
(
x y z 1

)
This shows that a rotation can be undone by using the same rotation matrix just
with the negative angle - henceforth this will be known as the inverse rotation,
written as R−1

x . Therefore if we return to the general plane the order of rotations
so far is: Tx,y,z ·R3rd ·R2nd ·R1st.

In order to undo the rotations so that we can translate the figure back into the
correct rotated position, we need to apply the inverse rotations in the order
described above. So our new order of rotations becomes:

Tx,y,z ·R3rd ·R2nd ·R1st ·R−1
2nd ·R

−1
3rd

This undoes the rotations done to align the point with the 1st axis and the
last step in the process is to undo the uniform movement done by using the
translation matrix. The manner which you undo the movement is by using the
inverse translation matrix T−1. This moves our rotated figured back, so that
the point which we wanted to rotate about is at its original position. Figure 5
is a step by step example of this process.

This is denoted as the point in a row vector form, and the matrices in the
correct order which would look like the following equation. For this example
the translation moves the point P you want to rotate about to x = 0.(

x y z w
)
· T ·Rz ·Ry ·Rx ·R−1

y ·R−1
z · T−1

3.5.3 Euler angles

Euler angles is a different method of rotation: Simply put, each figure has its
own coordinate system with axes along it self, and by rotating the figure around
these 3 axes, any rotated point can be reached. The point you want to rotate
the figure about is the origin for the figure’s coordinate system and the axes are
mutually perpendicular. See section 2.6.

There are multiple variations of terminologies for Euler angles: We will in this
report go into the term, "heading-pitch-bank" as presented in [1] p. 230. The
coordinate system for this terminology is based around a left handed coordinate
system with the y-axis upwards, the z-axis going into the screen (forward), and
the x-axis to the right. In this terminology, the rotation about the object’s
y-axis is a heading rotation, a rotation about the x-axis is a pitch rotation, and
the z-axis gives a bank rotation.

It can be somewhat difficult to understand what the different rotations does,
but if you picture an airplane, a heading rotation will change the way the air-
craft points in the plane it is in. Pitch is then how much the nose points

16

upwards or downwards, where a positive angle will give a downwards rotation
due to the left-handedness. Finally, bank controls how much the plane rolls
to either side, where a positive angle gives a counterclockwise rotation (due to
left-handedness).

(a) Starting position (b) Heading rotation

(c) Pitch rotation (d) Bank rotation

Figure 6: "Heading-Pitch-Bank" [1] p. 230-231

A problem with the Euler system is that every angle can be described with a
very large number of combinations of angles. Therefore a conical system can
be introduced in order to have every angle only described by 1 set of angles
[1] p. 238 . The way one does this is by limiting the angles of heading to the
interval [−180; 180] degrees, bank and pitch to [−90; 90] degrees. If pitch in this
canonical system is ±90◦, the bank angle is always 0.

As most computers calculate Euler angles in the opposite order of what we’ve
listed them, this is also the matrix we will look at in this report. If the order
of axis rotations to be applied is different, the matrices can be found here:
[5].

We are interested in the bank (z), pitch (x) heading (y) order. Since the matrices
are presented for a right handed system, all the signs of sinus functions are
reversed. In order to save space the following notations will be used: c will be
cos(Θ), the angle according to which axis will be noted as a subscript. The sine

17

function will likewise be denoted with a s. [5]

R = Z1X2Y3

=

 c1c3 + s1s2s3 c2s1 −c1s3 − c3s1s2

−c3s1 − c1s2s3 c1c2 −s1s3 + c1c3s2)
c2s3) −s2 c2c3


These angles are not a function of π and therefore any real number within the
constraints earlier defined, in order to avoid duality, will work.

The advantages of using Euler angles is that they are very intuitive to use, and
are therefore easily applied by humans. Another advantage is that they are
very easily stored, due to the low amount of information needed compared to
matrices. Most programming libraries have an built-in function that handles
Euler angle rotations. This allows all rotations to be stored as a set of three
numbers. [1] p. 241.

3.6 Scaling

Scaling is one of the simpler operations which can be performed when working
with math behind 3D graphics. When scaling an object, the object is made
larger or smaller by multiplying by a constant k. When k > 1 the object is
augmented and when 0 < k < 1 the object is diminished. If k < 0 the object
is also reflected across the plane perpendicular to the given axis. If k = −1 for
one of the coordinates, the size is not changed but the object is reflected along
the axis [4] p. 4-5.

If k = 0 for one of the coordinates an orthographic projection is performed,
which is elaborated in section 3.7.3.

By applying the constant to the entire object, a uniform scale is performed and
the angles and proportions are preserved. By multiplying part of the object
by a constant k, a nonuniform scale is performed, altering the proportions and
eventually the angles of the object [1] p. 144.

3.6.1 Scaling along cardinal axes

In order to multiply each coordinate with a constant, a scaling matrix is used
to perform the scaling. Such a matrix looks like this:

S(kx, ky, kz) =

kx 0 0
0 ky 0
0 0 kz


This matrix multiplies each coordinate with a constant. In order to leave one
(or two) of the coordinates unchanged, (e.g. if you only want to scale the object
in the x-direction and perform a nonuniform scale) the coordinate(s) you do not
want to change is just multiplied by 1.

18

For reasons explained earlier (section 3.4.6), we use 4x4 matrices for all opera-
tions in 3D space, thus we expand the scaling matrix to a 4x4 matrix:

S(kx, ky, kz) =


kx 0 0 0
0 ky 0 0
0 0 kz 0
0 0 0 1


Note that when scaling by simply multiplying with a scaling matrix, the scaling
performed is about the origin.

3.6.2 Scaling in general

In order to scale about the object instead of the origin, we can use the same
trick as with rotation: Translate the object to the origin, apply the scaling, and
translate the object back to the original position. This, however, only works
when scaling along the cardinal axes. In order to scale in directions not aligned
with the cardinal axes, we can use the same ideas previously used: Translate the
object to the origin, align with one of the cardinal axes, apply the scaling, undo
the alignment, and translate the object back to the original position.

As with translation and rotation, the scaling function also has an inverse func-
tion as long as all three values are non-zero. The inverse scaling function would
not make much sense if k = 0 for one of the coordinates, since that basically
would be a projection onto a 2D plane, which cannot be undone. The inverse
scaling function is defined as follows [4] p. 5:

S−1(kx, ky, kz) = S

(
1

kx
,

1

ky
,

1

kz

)
Given a point

−→
P =

(
x y z 1

)
, we can show that applying a scaling matrix

followed by the inverse scaling matrix results in the starting point:

−→
P · S(kx, ky, kz) · S−1(kx, ky, kz) =

−→
P ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


=
−→
P

3.7 Projection

3.7.1 Intro to projection

Projection is the operation of mapping 3D points onto a 2-dimensional plane.
This can e.g. be to project 3D points to the screen, or to some plane in the
3D world. The plane being projected to is called the projection plane [1] p.
184.

When projecting to the monitor, the operation of projection is used to determine
where on the screen each vertex should be painted, and thereby, in turn also
the color of each pixel on the screen.

19

Projections can be orthographic or perspective.

3.7.2 Perspective projection

Perspective projection is a form of projection, where the lines of projection all
intersect in a single point, called the center of projection [1] p. 185. This results
in objects further away from the projection plane look smaller, while objects
closer to the plane look larger.

Perspective projection operates with the concept of field of view (fov), which
is basically how wide the area being projected is. In 3D space there is a field
of view for both the horizontal, and vertical axes on the projection plane. The
zoom level is closely linked to the field of view [1] p. 367.

(a) The effect of perspective projec-
tion on the projection plane. Source:
[1]

(b) Perspective projection

Figure 7: Perspective projection

3.7.3 Orthographic projection

Figure 8: Orthographic projec-
tion

An alternative way of projecting is ortho-
graphic projection. This form of projection
contains no perspective, and therefore objects
appear the same size regardless of how far
they are from the projection plane. Further-
more lines that are parallel in 3D space will
also be parallel in orthographic projection.
The reason for this is the fact that the lines
of projection are parallel, in contrast to per-
spective projection where they intersect in a
single point [1] p. 368.

20

3.7.4 View frustum

The view frustum is a set of planes that define the space that is potentially visible
to the camera. The view frustum is determined by six clip planes. Anything
outside the view frustum is removed from the equation. This is also known as
clipping [1] p. 451.

The far clip plane determines how far away the camera can see. This is done for
two reasons. Firstly it limits the amount of vertices being rendered by clipping
anything farther away. Secondly it is nessesary to determine how far vertices
are from the camera. If n-bit numbers are used to represent the distance from
the camera to the vertex, only 2n different values can be stored. If e.g. integers
are used then distances from zero to 2n − 1 can be stored, and any distance
greater than 2n − 1 would would not be distinguishable from one another [1] p.
364-365.

The top, bottom, and sides of the frustum represent the top, bottom, and sides
of the output plane. This means that all points located e.g. on the top clip plane
will be projected onto the top of the projection plane, where it intersects with
the top clip plane. This means that the top, bottom, and side planes determine
the projection’s field of view [1] p. 365.

In this way, those four planes determine the field of view, and zoom level. The
top, and bottom planes determine the vertical field of view. Similarly the side
planes determine the vertical field of view. By increasing the angle between two
of those planes one can increase the field of view, either horizontally or vertically.
Similarly, by decreasing the angle, the field of view is decreased.

The view frustum, that in perspective projection graphically can be interpreted
as a frustum, is in orthographic projection a cube [2] p. 122.

The zoom level means something different in orthographic projection and per-
spective projection. Where in perspective projection zoom is related to the
angle between the view frustum’s clip planes, in orthographic projection it is
directly related to the size of the view frustum [1] p. 369.

Figure 9: The relationship be-
tween zoom and field of view
source: [1] p. 366

There is an inverse relationship between field
of view, and zoom level [1] p. 367. When
the field of view is increased, the zoom level
is decreased. This is caused by the fact that
increased field of view means that the space
inside the view frustum, needed to be pro-
jected to the same plane is increased. Thereby
there is less space to project each object
onto.

The relationship between the zoom level
and the field of view in perspective projec-
tion:

zoom =
1

tan
(fov

2

)

21

Below can be seen the relationship between the zoom level, and the size of the
view frustum in orthographic projection [1] p. 369.

zoom =
2

size

That gives one vertical zoom level, and one horizontal.

3.7.5 Coordinate Spaces and the clip matrix

Figure 10: Camera space
source: [1] p. 84

The vertices of a model are, to begin with,
represented in model space. In order to
project them one needs to convert them into
world space, and then into camera space.
Camera space is a coordinate system where
one axis points in the direction the camera
is facing. This is typically the z-axis [1] p.
370.

After the vertices are converted to camera
space, they are converted into clip space, us-
ing the aptly named clip matrix. When using
the clip matrix, the fourth homogenous coor-
dinate comes into action. The correct values
for the x- and y-values can be found by divi-
sion with a correct w. For perspective projec-
tion the value to be divided by is equal to z
[1] p. 371.

(x, y, z, w)


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0

 = (x, y, z, z)

When projecting orthogonaly, the w value is found using a sligtly different
matrix multiplication.

(x, y, z, w)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = (x, y, z, z)

In orthogonal projection the multiplication is with the identity matrix, and
results in the vertex being unaltered. Geometricaly speaking this is because
the z value is not relevant for determining where on the projection plane, each
vertex should be projected to.

The clip matrix also alters the vertices inside the view frustum, so that the
view frustum, even for perspective projection geometrically becomes a cube [2]
p. 122. In this way it is easier to check if vertices are outside the view frustum
or not. Because of the differences in the view frustum between perspective and
orthographic projection, there is a clip matrix for each type of projection.

22

The clip matrix for perspective projection looks as follows [1] p. 375:
zoomx 0 0 0

0 zoomy 0 0

0 0 f+n
f−n 1

0 0 −2nf
f−n 0


While the clip matrix for orthographic projection looks as follows [1] p. 376:

zoomx 0 0 0
0 zoomy 0 0
0 0 2

f−n 0

0 0 − f+n
f−n 1


Where zoomx is the horizontal zoom value, zoomy is the vertical zoom value.
f and n are the distances to the near and far clipping plane respectively. Dif-
ferent Application Programming Interfaces (API) use different conventions, e.g.
column vectors instead of row vectors. This can result in matrices that look
sligthly different, and the clip matrix is no exception [1] p. 375-377.

As a 4x4 matrix, the clip matrix can be concatenated with other transformation
matrices, to reduce the number of calculations.

4 Lighting and Rendering

Rendering is the act of creating a picture where each pixel has the information
of which color it is going to have with the use of computer programs. So for the
computer to draw anything on the screen we need to perform rendering.

In the real world, we see each pixel as emitted or reflected light which the section
on the standard lighting model will explain. It consist of ways to mathematically
calculate the brightness and reflections to get the correct color of the light which
is heading towards the camera.

In the latter part, we have light sources which make light without any emitting
surfaces. This is done because it in some cases is more controllable and easier
to just have light without having to build something emitting it. We will go
over the standard light types and light attenuation.

4.1 Rendering

The basic idea about rendering is to specify what color of light is approaching
the camera for that given pixel on the screen. We can be looking directly at
a surface emitting light or light from a light source bounced from one or more
places before going in the direction of the camera. Therefore we can simplify
all this and say that we have to find the surface closest to the camera in the
direction of each pixel and tell what light it is emitting or reflecting with the
direction to that pixel.

23

One of the solutions is the use of raytracing, where we trace the rays backwards,
meaning that we send out a ray from the middle of the given pixel and find the
first object it strikes. We can then calculate the color that is being reflected or
emitted from that point on the object and color the pixel.

Finding the color of the surface is rather easy if the surface emits its own light.
Then the pixel will get the color of the light emitted without taking any reflec-
tions into account. Most of the time a surface will not emit its own light and
we then have to find out what color the surface reflects in the direction of that
pixel. The answer is given by the bidirectional reflectance distribution function
(BRDF).

f(x, ŵin, ŵout, λ)

Source [1] p. 351. In this function x is a position on the surface, ŵin is the
direction of the incoming light and ŵout is the direction the light will be reflected.
The hats means they are unit vectors. λ is the color of the light, because each
color have its own reflectance distribution.

Before going any further with the BRDF we need to specify another thing:
Radiance. The eye can see 3 colors and then mix them together to create all
the colors we can see. However, each color has a wavelength, and in physics
light is considered energy in the form of electromagnetic radiation. The more
radiation, the brighter the light. Lambert’s law describes the strength of a ray,
the radiance, and it is defined as radiant power per unit projected area, per unit
solid angle. So both the power of the ray, the size of the area and incoming angle
determines the radiance. Back to the BDRF we can now use it to determine the
rendering equation, which will help us find what light is reflected on the surface
into our eyes. The rendering equation is as following:

Lout(x, ŵout, λ)

=Lemis(x, ŵout, λ) +

∫
Ω

Lin(x, ŵin, λ)f(x, ŵin, ŵout, λ)(−ŵin · n̂)dŵin

Source [1] p. 359. x is a point on a surface and λ is a single wavelength/color
channel, so it only takes one color channel and one point on the surface at a
time. On the left side of the equation: Lout(x, ŵout, λ) is "the radiance leaving
the point in the certain outgoing direction", which is the color we are going to
paint the pixel.

On the right side we are going to split it up in two parts: Lemis(x, ŵout, λ) is
the radiance emitted from the point x in the given outgoing direction.

The other part is a little more advanced:
∫

Ω
Lin(x, ŵin, λ)f(x, ŵin, ŵout, λ)(−ŵin·

n̂)dŵin, but to simplify it, it means the radiance reflected from point x in the
certain direction.

We will now break it up to make it easier to understand:
∫

Ω
means the sum

of all possible incoming directions [1] p. 360. Furthermore, we have (x, ŵin, λ)
which takes the radiance at the point from a certain direction. f(x, ŵin, ŵout, λ)
is the BRDF which tells us how much radiance from the direction before that
will be reflected in the direction we are interested in.

24

Lastly, (−ŵin · n̂)dŵin will account for the fact that if light hits perpendicular
on a surface, it will reflect more than if it is hit with a glancing angle. The n̂
is a vector which will at the most be 1 when the light hits perpendicular to the
surface, and it will be lower the more glancing the angle is.

4.2 The standard lighting model

A lighting model is a formula that can express a lot of BRDFs by adjusting
numbers for the different materials. A normal 3D game can contain several
lighting models, but many older games only contain one lighting model. This
lighting model is so basic that both OpenGL and DirectX have it hardwired
into their rendering pipeline, and the Nintendo Wii also supports it.

The basic idea with the model is to split the light that comes into our eyes into
four different kinds, where each kind is calculated differently. The four kinds
are:

The emissive contribution called cemis describes the amount of radiance
emitted from the surface in the given direction.

The specular contribution called cspec describes the light that hits a surface
directly from a light source and is reflected perfectly into the eyes. A good
example of this is a mirror.

The diffuse contribution called cdiff describes the light that hits a surface
directly from a light source and is divided evenly in every direction.

The ambient contribution called camb is a factor that will light up an entire
scene. It is used instead of light that will be reflected more than one time.

4.2.1 The emissive contribution

To calculate the emissive light, we just need two things which is the color and
intensity of the light the surface emits. It is specified as:

cemis = memis

The material’s emissive color, mspec, controls the intensity and color of the
light and the value will be higher for more reflective surfaces. So the color of
the emissive contribution is what the material emits.

25

4.2.2 The specular contribution

To get a better understanding of the math, we have inserted this picture:

Figure 11: The Phong model for specular reflection. Source: [1]

Note we will stop using the hat to indicate vectors. In the picture, n is the
surface normal vector, l is the unit vector with the direction of the light and r is
the unit vector of the reflected light created by the perfect bounce. v is the unit
vector with the direction to the eye and θ is the angle between r and v.

The reflection vector, r, is computed like this:

r = 2(n · l)n− l

Because we now know r we can find the specular lighting by using the Phong
model:

cspec = (sspec ⊗mspec)(cosθ)
mgls = (sspec ⊗mspec)(v · r)mgls

Source [1] p. 400. The product can’t be negative. ⊗ means component-wise
multiplication of colors. The mgls is the specular exponent and defines how
large the hotspot is. The hotspot is e.g. the light circle on balls when the light
bounces directly from a light bulb to your eyes. A smaller mgls produces at
larger circle but less falloff then a high mgls.

As in the emissive contribution the material’s specular color, mspec, controls the
intensity and color. The sspec on the other hand is the intensity and color of
the light. Both mspec and mspec is component-wise multiplied so both are taken
into account when we compute the light.

An optimization of the Phong model has been found:

Figure 12: The Blinn model for specular reflection. Source: [1]

26

Here r has been replaced by the halfway vector h: h = v+l
||v+l|| . This way r

doesn’t need to be calculated, and the specular light will therefore demand less
processing power. The Blinn model therefore looks like this:

cspec = (sspec ⊗mspec)(cosθ)
mgls = (sspec ⊗mspec)(n · h)mgls

Source [1] p. 403.

4.2.3 The diffuse contribution

For diffused light, we don’t need to know the viewer’s location as all rays are
divided in all directions. The direction of the light is however still important,
since we know that if the light will hit the surface at a perpendicular angle then
it will reflect more light. The diffused light is calculated like this:

cdiff = (sdiff ⊗mdiff)(n · l)

As in specular lighting, n is the surface normal vector and l is the unit vector
pointing to the light. sdiff is the color and intensity of the light and mdiff is
the color and intensity of the material. The product cannot be negative.

4.2.4 The ambient contribution

With ambient light we don’t need any unit vector, camera or surface normal
vector, because the light comes from everywhere and is reflected in all directions.
The equation is as follows:

camb = gamb ⊗mamb

As before, mamb is the intensity and color of the material. gamb is the color and
intensity of the light, and the g stands for global because there is often only one
value for an entire scene.

4.2.5 Putting it all together

When we put all together we have this:

clit =cspec + cdiff + camb + cemis

=(sspec ⊗mspec)max(n · h, 0)mgls+

(sdiff ⊗mdiff)max(n · l, 0) + gamb ⊗mamb +memis

Source [1] p. 407.
The max in cspec and cdiff because none of them can be negative. In the
following picture we can see all components in use except the emitting compo-
nent:

27

Figure 13: Ball with lighting effects. Source: [6]

The ambient lighting is covering the whole ball while the diffused is covering
about half of it. Lastly we see that the specular is only using a small spot.

4.3 Light sources

This section will cover light sources without any emitting surfaces to make it
easier and more controllable to use light.
First we are going to cover the standard light types which are supported by
OpenGL and DirectX.

4.3.1 Standard light types

A point light is a light with a position and a color, including intensity that
will emit light in all directions, and might have a falloff radius where the
intensity of the light will reach 0.

A spot light on the other hand will have a position and send the light in a
specified direction. They might also have a falloff distance.

A conical spot light has a circle as bottom and the circle’s peripheral
is its falloff angle. Inside the falloff angle there is a hotspot angle,
and the light inside it is more intense than outside it.

A rectangular spot light forms a pyramid instead of a cone.

A directional light is light from a point so far away it can light up an entire
scene. The sun uses this type.

Source [1] p. 414.

28

4.3.2 Light attenuation

Surfaces get less illumination from a light source the further away it is. To
calculate this it is common to use a linear interpolation function like this:

f(n) =


1 if d ≤ dmin
dmax−d

dmax−dmin
if dmin < d < dmax

0 if d ≥ dmax
Source [1] p. 418.

d is the distance. When the distance is smaller than dmin the light is at full
intensity and when the distance is larger than the max it is zero light intensity.
Between the min and max is a linear falloff that will make the intensity smaller
the further away frommin and closer tomax that d is. This function can be used
with the standard light types to calculate the light in the falloff area.

5 Practical Application

As an example of a practical application, we chose to produce a Tetris clone.
Since Tetris is fundamentally a 2D game, we had to come up with a way to
utilize the 3rd dimension. One idea was to have the player fill out a cube, but
that was rejected since it would get impossible to maintain any sort of overview
of which spots were free or not. We instead went with a cylindrical shape where
the player has to fill the outer wall and have full 360◦ movement.

5.1 Tech note

Figure 14: 2D reference
implementation

We chose to use OpenGL[7] via Java[8] for our appli-
cation, using the JogAmp JOGL library[9]. This was
the only real choice as we use a variety of operating
systems and the majority of us had only programmed
in Java. OpenGL is one of the major libraries1 for
communicating with the computer’s graphics hard-
ware; it abstracts away the vast majority of the com-
plex calculations and mathematical details of getting
3D graphics onto the screen.

5.2 Cylindrical Tetris

An interesting property of a cylinder wall is that we
can model it exactly like a regular 2D Tetris game
would work, and to simulate 360◦ movement we can
allow the piece to move past the edges and appear on
the other side.

1The other major contender is Microsoft’s DirectX

29

This turned out to be problematic to handle, unfortunately, so we came up with
a different model where instead of moving the Tetris piece left or right, we move
the entire playing field right or left. To the player the effect is the same, but it
is much easier to simulate.

But that merely reduced the core game to 2D, and even 2D Tetris has some
tricky details. One of those is how to actually model removing a whole row
which is made up of parts of several Tetris pieces, without mangling the pieces
themselves. We chose to treat a Tetris piece as made up of individual colored
square blocks. By also defining the playing field as a matrix of colored square
blocks, placing a Tetris piece turned into a simple operation of copying the
blocks of the piece onto the field, and removing a whole row no longer had to
consider what a piece was.

So when should a piece be considered "placed"? When it can’t move down any
further is the obvious answer, but when is that? Tetris pieces are not uniform
shapes, so detecting when a piece can’t move any further in some direction
required testing every block of the piece against the playing field. Some opti-
mization could be done to test fewer blocks, but since the maximum number of
collision tests per movement is 6, it was simply not worth it to complicate the
code for such a tiny gain.

Rotating a piece required a similar collision test. Here we chose to actually
perform the rotation, test whether the piece was colliding with the field, and
then undo the rotation if it was. Since the vast majority of piece rotations are
tried while there is plenty of space around the piece, this proved to be the most
efficient way.

We produced a 2D Tetris game - playable at http://tetris.pjj.cc/2d/ -
using the above rules, including the simulated wrap-around of a cylinder, to get
the bugs and behavior as we wanted it, then reused the same implementation
for the 3D version.

5.3 Displaying in 3D

Figure 15: Ring of
isosceles trapezoids

The first problem to hit the 3D implementation was
the fact that the game rules are all about square
blocks, but we want to display that as a cylinder
wall. This required coming up with a way to curve
the blocks, or approximate a curve. We chose to draw
each block so that when viewed from above they are
isosceles trapezoids with the large edge facing out-
wards.

Another issue was that it was difficult to see where
the bottom of the cylinder was. In the 2D version,
the bottom is quite naturally the bottom of the win-
dow, but in 3D where the camera can move around
and show the empty void from various directions, the
concept of bottom loses meaning. To aid the player we added a ring of neutral
blocks to denote where the bottom is.

30

http://tetris.pjj.cc/2d/

(a) Where is the bottom? (b) There is the bottom.

We also found that the flat colors made it difficult to maintain an overview of
which pieces were in front and which were in the back, so we added shading
to dim the blocks in the background. This was done using a simple formula of
lowering the color brightness the further from the center the block is. The effect
is quite pronounced, especially in a moving game. It could have been done with
proper lighting, but in computer science quick and dirty is sufficient in the vast
majority of cases.

(c) Without shading (d) Added shading

Figure 16: Visible grid

We experimented with showing the grid of the whole
playing field, but this turned out to be rather confus-
ing, so we dropped that.

The 3D version is playable at http://tetris.pjj.
cc/3d/.

31

http://tetris.pjj.cc/3d/
http://tetris.pjj.cc/3d/

6 Conclusion

Through the work on the report, we learned a lot about the methods and theory
behind 3D computer graphics, which are the underpinnings of modern popoular
libraries such OpenGL and DirectX.

We feel that we have achieved everything we set out to do in our goals and
objectives, although there are many more facets to the field of 3D graphics that
we did not cover.

We produced a functional 3D Tetris game, and we found that knowing the
math behind 3D graphics is not at all a requirement for making practical 3D
applications. The programming libraries abstract away the vast majority of the
math and lets one perform almost every operation by only giving the minimal
amount of information.

32

References

[1] Fletcher Dunn, Ian Parberry, 3D Math Primer for Graphics and Game De-
velopment, 2. edition, CRC Press.

[2] Eric Lengyel, Mathematics for 3D Game Programming & Computer Graph-
ics, 2. edition, Charles River Media.

[3] http://www.land-of-kain.de/docs/jogl/

[4] Tom Davis, Homogeneous Coordinates and Computer Graphics,
http://www.geometer.org/mathcircles/

[5] http://en.wikipedia.org/wiki/Euler_angles

[6] http://flylib.com/books/2/789/1/html/2/images/04fig01.jpg3

[7] http://khronos.org/opengl

[8] http://java.com/

[9] http://jogamp.org/jogl/

33

	Introduction
	Goals and Objectives

	3D Geometry
	Cartesian coordinates
	Cylindrical coordinates
	Points as vectors
	Planes defined by 3 points
	Objects in 3D space
	Multiple coordinate systems

	Operations on 3D points
	Why use matrices
	Combining operations
	Homogenous coordinates
	Translation
	What is a translation
	Why is it relevant in 3D applications
	Translation by addition
	Translation by addition is not a linear transformation
	Why translate by use of linear transformation
	4D translation matrix

	Rotation
	Rotation around cardinal axes
	Rotation in general
	Euler angles

	Scaling
	Scaling along cardinal axes
	Scaling in general

	Projection
	Intro to projection
	Perspective projection
	Orthographic projection
	View frustum
	Coordinate Spaces and the clip matrix

	Lighting and Rendering
	Rendering
	The standard lighting model
	The emissive contribution
	The specular contribution
	The diffuse contribution
	The ambient contribution
	Putting it all together

	Light sources
	Standard light types
	Light attenuation

	Practical Application
	Tech note
	Cylindrical Tetris
	Displaying in 3D

	Conclusion
	References

